12 research outputs found

    Redactable and Sanitizable Signature Schemes: Applications and Limitations for use in Decentralized Digital Identity Systems

    Full text link
    Redactable signature schemes and sanitizable signature schemes are methods that permit modification of a given digital message and retain a valid signature. This can be applied to decentralized identity systems for delegating identity issuance and redacting sensitive information for privacy-preserving verification of identity. We propose implementing these protocols on a digital credential and compare them against other privacy-enhancing techniques to assess their suitabilityComment: Extended Abstract, 3 Pages, 1 Figure, International Conference on AI and the Digital Economy 202

    Redactable Signature Schemes and Zero-knowledge Proofs: A comparative examination for applications in Decentralized Digital Identity Systems

    Full text link
    Redactable Signature Schemes and Zero-Knowledge Proofs are two radically different approaches to enable privacy. This paper analyses their merits and drawbacks when applied to decentralized identity system. Redactable Signatures, though competitively quick and compact, are not as expressive as zero-knowledge proofs and do not provide the same level of privacy. On the other hand, zero-knowledge proofs can be much faster but some protocols require a trusted set-up. We conclude that given the benefits and drawbacks, redactable signatures are more appropriate at an earlier stage and zero-knowledge proofs are more appropriate at a later stage for decentralized identity systemsComment: 9 Pages, Trustworthy digital identity international conference 202

    Measurement of the branching fractions for Cabibbo-suppressed decays D+K+Kπ+π0D^{+}\to K^{+} K^{-}\pi^{+}\pi^{0} and D(s)+K+ππ+π0D_{(s)}^{+}\to K^{+}\pi^{-}\pi^{+}\pi^{0} at Belle

    No full text
    International audienceWe present measurements of the branching fractions for the singly Cabibbo-suppressed decays D+K+Kπ+π0D^+\to K^{+}K^{-}\pi^{+}\pi^{0} and Ds+K+ππ+π0D_s^{+}\to K^{+}\pi^{-}\pi^{+}\pi^{0}, and the doubly Cabibbo-suppressed decay D+K+ππ+π0D^{+}\to K^{+}\pi^{-}\pi^{+}\pi^{0}, based on 980 fb1{\rm fb}^{-1} of data recorded by the Belle experiment at the KEKB e+ee^{+}e^{-} collider. We measure these modes relative to the Cabibbo-favored modes D+Kπ+π+π0D^{+}\to K^{-}\pi^{+}\pi^{+}\pi^{0} and Ds+K+Kπ+π0D_s^{+}\to K^{+}K^{-}\pi^{+}\pi^{0}. Our results for the ratios of branching fractions are B(D+K+Kπ+π0)/B(D+Kπ+π+π0)=(11.32±0.13±0.26)%B(D^{+}\to K^{+}K^{-}\pi^{+}\pi^{0})/B(D^{+}\to K^{-}\pi^{+}\pi^{+}\pi^{0}) = (11.32 \pm 0.13 \pm 0.26)\%, B(D+K+ππ+π0)/B(D+Kπ+π+π0)=(1.68±0.11±0.03)%B(D^{+}\to K^{+}\pi^{-}\pi^{+}\pi^{0})/B(D^{+}\to K^{-}\pi^{+}\pi^{+}\pi^{0}) = (1.68 \pm 0.11\pm 0.03)\%, and B(Ds+K+ππ+π0)/B(Ds+K+Kπ+π0)=(17.13±0.62±0.51)%B(D_s^{+}\to K^{+}\pi^{-}\pi^{+}\pi^{0})/B(D_s^{+}\to K^{+}K^{-}\pi^{+}\pi^{0}) = (17.13 \pm 0.62 \pm 0.51)\%, where the uncertainties are statistical and systematic, respectively. The second value corresponds to (5.83±0.42)×tan4θC(5.83\pm 0.42)\times\tan^4\theta_C, where θC\theta_C is the Cabibbo angle; this value is larger than other measured ratios of branching fractions for a doubly Cabibbo-suppressed charm decay to a Cabibbo-favored decay. Multiplying these results by world average values for B(D+Kπ+π+π0)B(D^{+}\to K^{-}\pi^{+}\pi^{+}\pi^{0}) and B(Ds+K+Kπ+π0)B(D_s^{+}\to K^{+}K^{-}\pi^{+}\pi^{0}) yields B(D+K+Kπ+π0)=(7.08±0.08±0.16±0.20)×103B(D^{+}\to K^{+}K^{-}\pi^{+}\pi^{0})= (7.08\pm 0.08\pm 0.16\pm 0.20)\times10^{-3}, B(D+K+ππ+π0)=(1.05±0.07±0.02±0.03)×103B(D^{+}\to K^{+}\pi^{-}\pi^{+}\pi^{0})= (1.05\pm 0.07\pm 0.02\pm 0.03)\times10^{-3}, and B(Ds+K+ππ+π0)=(9.44±0.34±0.28±0.32)×103B(D_s^{+}\to K^{+}\pi^{-}\pi^{+}\pi^{0}) = (9.44\pm 0.34\pm 0.28\pm 0.32)\times10^{-3}, where the third uncertainty is due to the branching fraction of the normalization mode. The first two results are consistent with, but more precise than, the current world averages. The last result is the first measurement of this branching fraction

    Measurement of the B+/B0B^+/B^0 production ratio in e+ee^+e^- collisions at the Υ(4S)\Upsilon(4S) resonance using BJ/ψ()KB \rightarrow J/\psi(\ell\ell) K decays at Belle

    No full text
    We measure the ratio of branching fractions for the Υ(4S)\Upsilon (4S) decays to B+BB^+B^- and B0Bˉ0B^0\bar{B}{}^0 using B+J/ψ()K+B^+ \rightarrow J/\psi(\ell\ell) K^+ and B0J/ψ()K0B^0 \rightarrow J/\psi(\ell\ell) K^0 samples, where J/ψ()J/\psi(\ell\ell) stands for J/ψ+J/\psi \to \ell^+\ell^- (=e\ell = e or μ\mu), with 711711 fb1^{-1} of data collected at the Υ(4S)\Upsilon(4S) resonance with the Belle detector. We find the decay rate ratio of Υ(4S)B+B\Upsilon(4S) \rightarrow B^+B^- over Υ(4S)B0Bˉ0\Upsilon(4S) \rightarrow B^0\bar{B}{}^0 to be 1.065±0.012±0.019±0.0471.065\pm0.012\pm 0.019 \pm 0.047, which is the most precise measurement to date. The first and second uncertainties are statistical and systematic, respectively, and the third uncertainty is systematic due to the assumption of isospin symmetry in BJ/ψ()KB \to J/\psi(\ell\ell) K

    Measurement of branching fractions of Λc+pKS0KS0\Lambda_c^+\to{}pK_S^0K_S^0 and Λc+pKS0η\Lambda_c^+\to{}pK_S^0\eta at Belle

    No full text
    We present a study of a singly Cabibbo-suppressed decay Λc+pKS0KS0\Lambda_c^+\to{}pK_S^0K_S^0 and a Cabibbo-favored decay Λc+pKS0η\Lambda_c^+\to{}pK_S^0\eta based on 980 fb1\rm fb^{-1} of data collected by the Belle detector, operating at the KEKB energy-asymmetric e+ee^+e^- collider. We measure their branching fractions relative to Λc+pKS0\Lambda_c^+\to{}pK_S^0: B(Λc+pKS0KS0)/B(Λc+pKS0)=(1.48±0.08±0.04)×102\mathcal{B}(\Lambda_c^+\to{}pK_S^0K_S^0)/\mathcal{B}(\Lambda_c^+\to{}pK_S^0)={(1.48 \pm 0.08 \pm 0.04)\times 10^{-2}} and B(Λc+pKS0η)/B(Λc+pKS0)=(2.73±0.06±0.13)×101\mathcal{B}(\Lambda_c^+\to{}pK_S^0\eta)/\mathcal{B}(\Lambda_c^+\to{}pK_S^0)={(2.73\pm 0.06\pm 0.13)\times 10^{-1}}. Combining with the world average B(Λc+pKS0)\mathcal{B}(\Lambda_c^+\to{}pK_S^0), we have the absolute branching fractions: B(Λc+pKS0KS0)=(2.35±0.12±0.07±0.12)×104\mathcal{B}(\Lambda_c^+\to{}pK_S^0K_S^0) = {(2.35\pm 0.12\pm 0.07 \pm 0.12 )\times 10^{-4}} and B(Λc+pKS0η)=(4.35±0.10±0.20±0.22)×103\mathcal{B}(\Lambda_c^+\to{}pK_S^0\eta) = {(4.35\pm 0.10\pm 0.20 \pm 0.22 )\times 10^{-3}}. The first and second uncertainties are statistical and systematic, respectively, while the third ones arise from the uncertainty on B(Λc+pKS0)\mathcal{B}(\Lambda_c^+\to{}pK_S^0). The mode Λc+pKS0KS0\Lambda_c^+\to{}pK_S^0K_S^0 is observed for the first time and has a statistical significance of > ⁣10σ>\!10\sigma. The branching fraction of Λc+pKS0η\Lambda_c^+\to{}pK_S^0\eta has been measured with a threefold improvement in precision over previous results and is found to be consistent with the world average

    Measurement of the Ωc0\Omega_c^0 lifetime at Belle II

    No full text
    We report on a measurement of the Ωc0\Omega_c^0 lifetime using Ωc0Ωπ+\Omega_c^0 \to \Omega^-\pi^+ decays reconstructed in e+eccˉe^+e^-\to c\bar{c} data collected by the Belle II experiment and corresponding to 207 fb1207~{\rm fb^{-1}} of integrated luminosity. The result, τ(Ωc0)=243±48(stat)±11(syst) fs\rm\tau(\Omega_c^0)=243\pm48( stat)\pm11(syst)~fs, agrees with recent measurements indicating that the Ωc0\Omega_c^0 is not the shortest-lived weakly decaying charmed baryon

    Measurement of the Ωc0\Omega_c^0 lifetime at Belle II

    No full text
    We report on a measurement of the Ωc0\Omega_c^0 lifetime using Ωc0Ωπ+\Omega_c^0 \to \Omega^-\pi^+ decays reconstructed in e+eccˉe^+e^-\to c\bar{c} data collected by the Belle II experiment and corresponding to 207 fb1207~{\rm fb^{-1}} of integrated luminosity. The result, τ(Ωc0)=243±48(stat)±11(syst) fs\rm\tau(\Omega_c^0)=243\pm48( stat)\pm11(syst)~fs, agrees with recent measurements indicating that the Ωc0\Omega_c^0 is not the shortest-lived weakly decaying charmed baryon

    Measurement of the Ωc0\Omega_c^0 lifetime at Belle II

    No full text
    We report on a measurement of the Ωc0\Omega_c^0 lifetime using Ωc0Ωπ+\Omega_c^0 \to \Omega^-\pi^+ decays reconstructed in e+eccˉe^+e^-\to c\bar{c} data collected by the Belle II experiment and corresponding to 207 fb1207~{\rm fb^{-1}} of integrated luminosity. The result, τ(Ωc0)=243±48(stat)±11(syst) fs\rm\tau(\Omega_c^0)=243\pm48( stat)\pm11(syst)~fs, agrees with recent measurements indicating that the Ωc0\Omega_c^0 is not the shortest-lived weakly decaying charmed baryon
    corecore